28 research outputs found

    The bitter taste of payback: the pathologising effect of TV revengendas

    Get PDF
    The thirst for vengeance is a timeless subject in popular entertainment. One need only think of Old Testament scripture; Shakespeare\u27s Hamlet; Quentin Tarantino\u27s Kill Bill or the TV series Revenge, and we immediately conjure up images of a protagonist striving to seek justice to avenge a heinous wrong committed against them. These texts, and others like it, speak to that which is ingrained in our human spirit about not only holding others responsible for their actions, but also about retaliation as payback. This article seeks to problematise the way the popular revenge narrative effectively constructs the vendetta as a guilty pleasure through which the audience can vicariously gain satisfaction, while at the same time perpetuates law\u27s rhetoric that personal desires for vengeance are to be repressed and denied. In particular, the article will demonstrate the way such popular revenge narratives contribute to the pathologising of human desire for payback

    Patterns and rates of exonic de novo mutations in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Aid, Debt Burden and Government Fiscal Behaviour in Cote d'Ivoire

    Full text link

    Data from: Artificial light at night confounds broad-scale habitat use by migrating birds

    No full text
    With many of the world's migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations

    In Situ Triaxial Testing To Determine Fracture Permeability and Aperture Distribution for CO<sub>2</sub> Sequestration in Svalbard, Norway

    No full text
    On Svalbard, Arctic Norway, an unconventional siliciclastic reservoir, relying on (micro)­fractures for enhanced fluid flow in a low-permeable system, is investigated as a potential CO<sub>2</sub> sequestration site. The fractures’ properties at depth are, however, poorly understood. High resolution X-ray computed tomography (micro-CT) imaging allows one to visualize such geomaterials at reservoir conditions. We investigated reservoir samples from the De Geerdalen Formation on Svalbard to understand the influence of fracture closure on the reservoir fluid flow behavior. Small rock plugs were brought to reservoir conditions, while permeability was measured through them during micro-CT imaging. Local fracture apertures were quantified down to a few micrometers wide. The permeability measurements were complemented with fracture permeability simulations based on the obtained micro-CT images. The relationship between fracture permeability and the imposed confining pressure was determined and linked to the fracture apertures. The investigated fractures closed due to the increased confining pressure, with apertures reducing to approximately 40% of their original size as the confining pressure increased from 1 to 10 MPa. This coincides with a permeability drop of more than 90%. Despite their closure, fluid flow is still controlled by the fractures at pressure conditions similar to those at the proposed storage depth of 800–1000 m

    The West African Monsoon Modeling and Evaluation project (WAMME) and its First Model Intercomparison Experiment

    No full text
    International audienceThis paper presents the scientific challenge in West African monsoon (WAM) simulation and discusses the West African Monsoon Modeling and Evaluation project (WAMME) initiative and its approaches to improve WAM simulations. Major scientific highlights from the first WAMME model comparison are the focus of the paper. Based on the first WAMME experiment, the WAMME models' performance is evaluated with precipitation being the major focus. The analyses indicate that the models with specified SST generally have reasonable simulations of the mean spatial distribution of WAM precipitation but largely fail to produce proper daily precipitation frequency distributions. WAMME multi-model ensembles, however, produce excellent WAM precipitation spatial distribution, intensity, and temporal evolution, better than Reanalysis. In addition, the WAMME is the first project consisting of the most state-of-the-art general circulation models (GCMs) and regional climate models (RCMs) to collectively investigate the WAM/external forcing feedbacks. Cases based on the first WAMME experiment are presented to demonstrate scientific challenges for further investigation of WAM, SST, land, and aerosol interactions. The analyses in this article provide a quantitative assessment on model uncertainty, identify main issues in WAM modeling, and provide a good starting point as benchmarks for future studies
    corecore